Stochastic and information-thermodynamic structures of population dynamics in a fluctuating environment.

نویسندگان

  • Tetsuya J Kobayashi
  • Yuki Sughiyama
چکیده

Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic functional population dynamics with jumps

In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...

متن کامل

Numerical Simulation for Optimal Harvesting Strategies of Fish Stock in Fluctuating Environment

The population size of fish stock is affected by the variability of its environment, both biologic and economic. The classical logistic growth equation is applied to simulate fish population dynamics. Environmental variation was included in the optimization of harvest to obtain a relation in which the maximum sustainable yield and biomass varied as the environment varied. The fluctuating enviro...

متن کامل

Phenotypic diversity, population growth, and information in fluctuating environments.

Organisms in fluctuating environments must constantly adapt their behavior to survive. In clonal populations, this may be achieved through sensing followed by response or through the generation of diversity by stochastic phenotype switching. Here we show that stochastic switching can be favored over sensing when the environment changes infrequently. The optimal switching rates then mimic the st...

متن کامل

Casimir ‎effects‎‎ of nano objects in fluctuating scalar and electromagnetic fields: Thermodynamic investigating

 Casimir entropy is an important aspect of casimir effect and at the nanoscale is visible. In this paper, we employ the path integral method to ‎obtain a‎ ‎general‎ relation for casimir entropy and ‎i‎nternal energy of arbitrary shaped objects in the presence of two, three and four dimension scalar fields and ‎the‎ electromagnetic field. For this purpose, using Lagrangian and based on a perturb...

متن کامل

Extinction risk in periodically fluctuating environments

Periodically fluctuating environments occur in various ways in nature but have not, however, been studied in detail yet in the context of the color of environmental noise and extinction risk of populations. We use a stochastic model to simulate population dynamics with compensatory density regulation under four different patterns of periodically fluctuating environments. We found that extinctio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 96 1-1  شماره 

صفحات  -

تاریخ انتشار 2017